The Reactions of Triplet Methylene with Alkyl Radicals in Ordinary Photolysis Systems

By Peter S. T. Lee, Robert L. Russell, and F. S. Rowland*

(Department of Chemistry, University of California, Irvine, California, 92664)

Summary Triplet methylene is very unreactive with alkanes, surviving $>10^9$ collisions with CD₄ before reacting with methyl radicals to form ethylene plus a hydrogen atom.

THE chemical reactivity of methylene has been the subject of considerable controversy. While singlet methylene reacts rapidly¹ and rather indiscriminately^{2,3} with various substrates, triplet methylene is more selective^{2,4} and has been shown by study of reactive competition between O₂ and but-2-ene to survive without chemical reaction $>10^4$ collisions with the olefin.⁵ An upper limit on the reactivity of ${}^{3}CH_{2}$ with CH_{4} has been set as $>10^{4}$ collisions/reaction from spectroscopic study of methylene during flash photolysis.¹ We now report "steady-state" photolysis studies of keten-alkane mixtures in which triplet methylene is found to be so unreactive toward the stable molecules, that it usually survives for $>10^{-2}$ sec., and eventually reacts with other radicals in the system. Such a radical-radical reaction is illustrated in reactions (1) and (2) for ¹⁴CH₂ with the CH₂D and CD₃ radicals found in CD₄. No alternative mechanisms for the formation of mono- and di-deuteriated ethylenes have been suggested for such systems; undeuteriated ¹⁴CH₂:CH₂ can arise from the attack of ¹CH₂ or ³CH₂

 \dagger ¹(¹⁴CH₂) or ³(¹⁴CH₂) with CH₂:CO is an alternative path.

on ${}^{14}CH_2:CO,\dagger$ and has long been identified as a known reaction path in such systems.

$${}^{3}({}^{14}\mathrm{CH}_{2}) + \mathrm{CD}_{3} \rightarrow {}^{14}\mathrm{CH}_{2} \cdot \mathrm{CD}_{3}^{*} \rightarrow {}^{14}\mathrm{CH}_{2} \cdot \mathrm{CD}_{2} + \mathrm{D}$$
(1)

$$^{3}(^{14}CH_{2}) + CH_{2}D \rightarrow ^{14}CH_{2} \cdot CH_{2}D^{*} \rightarrow ^{14}CH_{2} : CHD + H (2a)$$

$$^{14}CH_2:CH_2 + D (2b)$$

The fate of methylene has been followed through the use of ${}^{14}\text{CH}_2$ or CHT tracers in the 313 nm photolysis of ${}^{14}\text{CH}_2$:CO or CHT:CO, in the presence of 400—600 torr of substrate. Standard techniques of radio gas chromatography have been used for analysis, including isotopic separations such as that of ${}^{14}\text{CH}_2$:CHD and ${}^{14}\text{CH}_2$:CD₂ from ${}^{14}\text{CH}_2$:CH₂ (or of the monotritiated $C_2\text{H}_x\text{D}_{3-x}$ T counterparts). About 70% of the methylene so produced is found as ${}^{1}\text{CH}_2$ and reacts rapidly by the reactions characteristic of the singlet spin state. These reactions persist in the presence of O₂ scavenger.

Confirmation that radical-radical reactions involving triplet methylene are indeed occurring has involved these additional experimental verifications:

(a) suppression of all such radical-radical products by small concentrations of O_2 scavenger; (b) the presence in

the CD_4 system of [14C] acetylene, as expected for reaction (3);¹ (c) the absence of any reaction of ¹⁴CH₂:CO when

$$^{3}(^{14}CH_2) + ^{3}CH_2 \rightarrow ^{14}CH : CH + H_2(\text{or } 2H)$$
 (3)

CH3 groups are generated by 366 nm photolysis of azomethane in keten-alkane mixtures, indicating that alkyl radical attack on the keten is not important; (d) the increase of "CH₃ products," including [¹⁴C]ethylene during cophotolysis of ¹⁴CH₂:CO and azomethane at 313 and 334 nm, confirming that methyl radical is a precursor of $[^{14}C]$ ethylene; (e) the observation of tritiated vinyl fluoride in CHT:CO- CD_3F , as required for the CD_2F reaction (4a), analogous to (1)—as well as CHT:CD₂ and CHT:CHD from (4b) (perhaps) and (2), respectively; (f) an increase in [14C]acetylene

$${}^{3}(CHT) + CD_{2}F \rightarrow CHT \cdot CD_{2}F^{*} \rightarrow CHT : CDF + D \qquad (4a)$$

$$CHT:CD_2 + F$$
 (4b)

and decrease in ¹⁴CH₂:CHD and ¹⁴CH₂:CD₂ from ¹⁴CH₂:CO- CD_4 at high pressures (2000 torr)—at this pressure, more efficient collisional stabilization of CH₂D·CD₃* formed by ¹CH₂ insertion appreciably reduces the methyl radical concentration, thereby tending to suppress reactions (1) and (2), while making (3) more likely because of the lower concentration of other competing radicals; (g) reactions (2) and (5) are observed in good yield for neo- C_5D_{12} and C_2D_6 , but in reduced yield for more highly branched hydrocarbons for which the abstraction reaction (6) proceeds sufficiently rapidly to remove much of the ³CH₂ before collision with a radical.

$$^{3}(^{14}CH_{2}) + RCD_{2} \rightarrow ^{14}CH_{2} \cdot CD_{2}R^{*} \rightarrow ^{14}CH_{2} \cdot CD_{2} + R$$
 (5)

$$CH_2 + RH \rightarrow CH_3 + R$$
(6)
or RD $\rightarrow CH_3D + R$

The overall steady-state radical concentration in our system-photolysis times of several hours-is approximately 10^{11} radicals/cm³, or about 10^{-9} times the molecule concentration The observation of radical-radical reactions for triplet methylene implies collision efficiencies for triplet methylene reaction with CD_4 of $< 10^{-9}$, and corresponding lifetimes $>10^{-2}$ sec. Indeed, we have no evidence that ³CH₂ has reacted with CD₄ at all in our system—the methyl radicals may not come from reaction (6), but solely from decomposition of CH₂D·CD₃* formed in the ¹CH₂ insertion reaction. Since these triplet reactions with radicals occur in systems containing 1 part in 100 of keten, and in which about 1 part in 10⁴ of ethylene is formed during photolysis, the collision efficiencies for the reactions of ³CH₂ with keten and ethylene must be $< 10^{-7}$ and $< 10^{-5}$ respectively.

The addition of ${}^{3}CH_{2}$ to CH_{3} is >90 kcal./mole exothermic, with an activation energy toward loss of a hydrogen atom from the excited ethyl radical of only 40 kcal./mole.6 Consequently, decomposition occurs in $< 10^{-11}$ sec.,⁶ with no appreciable collisional stabilization of the excited ethyl radicals. Similarly, the reactions of ³CH₂ with other radicals should be highly exothermic and proceed rapidly to decomposition. Some of these reactions should be readily observable in other steady-state systems.

This work was supported by an A.E.C. contract.

(Received, October 13th, 1969; Com. 1547.)

¹ W. Braun, A. M. Bass, and M. Pilling, 5th International Conference on Photochemistry, New York, September 1969.
² B. M. Herzog and R. W. Carr, jun., J. Phys. Chem., 1967, 71, 2688.
³ F. H. Dorer and B. S. Rabinovitch, J. Phys. Chem., 1965, 69, 1964.
⁴ D. F. Ring and B. S. Rabinovitch, Canad. J. Chem., 1968, 46, 2435.
⁵ F. S. Rowland, C. McKnight, and E. K. C. Lee, Ber. Bunsengesellschaft Phys. Chem., 1968, 72, 236.

3

- ⁶ D. W. Setser and B. S. Rabinovitch, Adv. Photochem., 1964, 3, 1.